153 research outputs found

    Cloud Dispersal in Turbulent Flows

    Get PDF
    Cold clouds embedded in warm media are very common objects in astrophysics. Their disruption timescale depends strongly on the dynamical configuration. We discuss the evolution of an initially homogeneous cold cloud embedded in warm turbulent gas. Within a couple of dynamical timescales, the filling factor of the cold gas within the original cloud radius drops below 50%. Turbulent diffusivities estimated from the time evolution of radial filling factor profiles are not constant with time. Cold and warm gas are bodily transported by turbulence and mixed. This is only mildly indicated by column density maps. The radiation field within the cloud, however, increases by several orders of magnitudes due to the mixing, with possible consequences for cloud chemistry and evolution within a few dynamical timescales.Comment: 11 pages, 12 figures, accepted by MNRA

    Building Merger Trees from Cosmological N-body Simulations

    Full text link
    Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. We then highlight different ways to build merger histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks. We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between identification and tree building rather than one which conducts a straightforward sequential treatment of these two steps. This is rooted in the complexity of the merging trees which have to depict an inherently dynamical process from the partial temporal information contained in the collection of instantaneous snapshots available from the N-body simulation.Comment: 19 pages, 28 figure

    Magnetized Non-linear Thin Shell Instability: Numerical Studies in 2D

    Get PDF
    We revisit the analysis of the Non-linear Thin Shell Instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI -- namely transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfv\'en speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernovae shells to colliding stellar winds.Comment: 12 pages, 17 figures, some of them at low resolution. Submitted to ApJ, comments welcom

    Dark matter within high surface brightness spiral galaxies

    Get PDF
    We present results from a detailed dynamical analysis of five high surface brightness, late type spirals, studied with the aim to quantify the luminous-to-dark matter ratio inside their optical radii. The galaxies' stellar light distribution and gas kinematics have been observed and compared to hydrodynamic gas simulations, which predict the 2D gas dynamics arising in response to empirical gravitational potentials, which are combinations of differing stellar disk and dark halo contributions. The gravitational potential of the stellar disk was derived from near-infrared photometry, color-corrected to constant (M/L); the dark halo was modelled by an isothermal sphere with a core. Hydrodynamic gas simulations were performed for each galaxy for a sequence of five different mass fractions of the stellar disk and for a wide range of spiral pattern speeds. These two parameters mainly determine the modelled gas distribution and kinematics. The agreement between the non-axisymmetric part of the simulated and observed gas kinematics permitted us to conclude that the galaxies with the highest rotation velocities tend to possess near-maximal stellar disks. In less massive galaxies, with v_max<200 km/s, the mass of the dark halo at least equals the stellar mass within 2-3 R_disk. The simulated gas morphology provides a powerful tool to determine the dominant spiral pattern speed. The corotation radius for all galaxies was found to be constant at R_corotation ~ 3 R_disk and encloses the strong part of the stellar spiral in all cases.Comment: 28 pages, 7 figures; to appear in the Astrophysical Journal, Vol. 586, March 200

    Reionization history constraints from neural network based predictions of high-redshift quasar continua

    Full text link
    Observations of the early Universe suggest that reionization was complete by z6z\sim6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα\alpha damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα\alpha, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα\alpha. Our QSANNdRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z=7.0851z=7.0851 and ULAS J1342+0928 at z=7.5413z=7.5413, respectively. Using our more accurate reconstructions of these two z>7z>7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find xˉHI=0.250.05+0.05\bar{x}_\mathrm{HI} = 0.25^{+0.05}_{-0.05} at z=7.0851z=7.0851 and xˉHI=0.600.11+0.11\bar{x}_\mathrm{HI} = 0.60^{+0.11}_{-0.11} at z=7.5413z=7.5413. Our results are consistent with the literature and favour a rapid end to reionization

    Forming stars on a viscous timescale: the key to exponential stellar profiles in disk galaxies?

    Get PDF
    We argue for implementing star formation on a viscous timescale in hydrodynamical simulations of disk galaxy formation and evolution. Modelling two-dimensional isolated disk galaxies with the Bhatnagar-Gross-Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic timescale for star formation is equal to the viscous timescale in disks, the resulting stellar profile is exponential on several scale lengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disk formation simulations which either (a) commence star formation in an already exponential gaseous disk, (b) begin a disk simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disk formation until the dark matter halos are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable timescale, resorts to an efficiency parameter. With star formation prescribed on a viscous timescale however, we find gas and star fractions after \sim 12 Gyr that are consistent with observations without having to invoke any ``fudge factor'' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous timescale is indeed the natural timescale for star formation

    Comparing Simulations of AGN Feedback

    Full text link
    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGN) to the simulations results in much better agreement between the methods. In this case both simulations display halo gas entropies of 100 keV cm^2, similar decrements in the star-formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.Comment: 22 pages, 20 figures, 3 tables, Accepted to ApJ, comments welcom

    Modeling high-redshift galaxies: what can we learn from high and ultra-high resolution hydrodynamical simulations?

    Get PDF
    We present results from a high resolution cosmological galaxy formation simulation called Mare Nostrum and a ultra-high resimulation of the first 500 million years of a single, Milky Way (MW) sized galaxy. Using the cosmological run, we measure UV luminosity functions and assess their sensitivity to both cosmological parameters and dust extinction. We find remarkably good agreement with the existing data over the redshift range 4 < z < 7 provided we adopt the favoured cosmology (WMAP 5 year parameters) and a self-consistent treatment of the dust. Cranking up the resolution, we then study in detail a z = 9 protogalaxy sitting at the intersection of cold gas filaments. This high-z MW progenitor grows a dense, rapidly spinning, thin disk which undergoes gravitational fragmention. Star formation in the resulting gas clumps rapidly turns them into globular clusters. A far reaching galactic wind develops, co-powered by the protogalaxy and its cohort of smaller companions populating the filaments. Despite such an impressive blow out, the smooth filamentary material is hardly affected at these redshift

    Star Formation in Viscous Galaxy Disks

    Get PDF
    The Lin and Pringle model (1987) of galactic disk formation postulates that if star formation proceeds on the same timescale as the viscous redistribution of mass and angular momentum in disk galaxies, then the stars attain an exponential density profile. Their claim is that this result holds generally: regardless of the disk galaxy's initial gas and dark matter distribution and independent of the nature of the viscous processes acting in the disk. We present new results from a set of 2D hydro-simulations which investigate their analytic result

    The angular momentum of baryons and dark matter halos revisited

    Get PDF
    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r=0.1rvir. In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/rvir>0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons remains close to that of dark matter halos. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.Comment: 15 pages,12 figures, submitted to MNRA
    corecore